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LONG-TERM GOALS

The goal of this task is to identify and develop acoustic sensor technology that can be diver-portable or
integrated onto the front of an underwater vehicle.  The sensor will be capable of detecting and
localizing fully buried mines, and detecting, classifying, and localizing volume and partially buried
mines.  This task is a joint effort with the 6.3 Diver Core Program effort entitled, “Forward Looking
Acoustic Sensors for Divers and Small Underwater Vehicles.”  The overall goal of this joint effort is to
develop a complete system that will be no larger than 10-inches in diameter with a 20-inch length, will
be neutrally buoyant in water, and will weigh less than 35 pounds in air.

OBJECTIVES

This task seeks to identify and develop technology that will detect and localize fully buried mines as
well as to detect, classify, and localize volume and partially buried mines.

APPROACH

The approach to identify and develop the required technology for the buried mine sensor system that
can be diver-portable or be attached to the front of an underwater vehicle consists of five distinct
efforts.  In the first effort, an assessment of individual sensor technologies was conducted to determine
the most viable concept(s) for the sensor system.  From this work, issues associated with candidate
sensor concepts were identified and addressed in the second effort.  In the third effort, the candidate
sensor concept(s) will be designed, and algorithms needed to process and display the signals will be
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developed.  The individual sensor(s) will be tested in the fourth effort.  In the fifth effort, the sensor(s)
will be integrated and demonstrated.

The key issues needed in identifying candidate sensor concepts include:

(a) Determination of the effectiveness of a sonar (frequency, aperture size, beam pattern, pulse
type, signal processing techniques, etc.) to detect completely buried mines.

(b) Identification and development of the technology that will provide capability in classification.
(c) Integration and packaging of these sensors into a diver-portable unit or a unit that can be

attached onto the front of an underwater vehicle.

In regard to issue (a), while there exists sonar performance models such as SEARAY and the shallow
water acoustic tool set (SWAT) which predict sonar performance against volume and partially buried
mines, there does not exist validated models that accurately predict sonar performance against buried
mines.  The key modeling issues are to accurately predict the amount of acoustic energy that can
propagate into and out of the sediment.  Several experiments have measured higher acoustic
penetration into sediment at shallow grazing angles than expected.1-4 Two proposed explanation for
this penetration are: (1) the excitation of a biot slow wave in the sediment in which porosity and
permeability of the sediment are important factors5 and (2) scattering of the acoustic beam into the
sediment by patches of roughness at the water-sediment interface.6  In order to properly determine
sonar tradeoffs (i.e., frequency, aperture size, beam pattern, etc.), an accurate accounting of penetration
to, and backscatter from, a buried target needs to be incorporated into a sonar performance model.
Thus, a validated model that predicts sonar performance against buried targets is unresolved.

WORK COMPLETED

In FY 1996, a concept feasibility study for an appropriate sensor concept was conducted.  Results of
this sensor technology assessment identified that a wide field-of-view (FOV), multiple-beam, dual-
frequency (lower frequency for buried mine detection and higher frequency for imaging/classification
capability) acoustic lens sonar was the best candidate sensor concept for a system that could be diver-
portable or attached to the front of an underwater vehicle.7  This study also identified important
acoustic issues which included: (1) the lack of  data associated with the material property (attenuation
at frequencies less than 100 kHz and speed of sound) in candidate acoustic lens materials, and (2) the
mechanism for bottom penetration at shallow grazing angles has not been resolved.

In FY 1997, two efforts were initiated to resolve these acoustic issues.  In the first effort, an
experiment was conducted to obtained measurements of attenuation and speed of sound for different
candidate elastomeric materials (various compositions of neoprene, EPDM, and nitrile as well as
hypalon and silicone).  Results of this effort were used to determine a candidate lens design for the
dual frequency system.  In the second effort, a laboratory experiment was performed to test if the
roughness diffraction mechanism permits an increase in penetration at shallow grazing angles.  In this
experiment, two immiscible fluids (vegetable oil floating on glycerin) formed layers separated by an
interface where small polystyrene beads were floated to simulate roughness.  An array of hydrophones
placed in the bottom layer was used to measure the acoustic levels transmitted across the interface.
Results of these measurements have demonstrated the following four points.  First, a significant
amount of acoustic energy is scattered into the bottom layer by the beads floating at the interface.
Therefore, a non-flat sand bottom may cause an increase in transmitted acoustic energy at shallow



grazing angles.  Second, results from using the array as a beamformer have indicated that the scattered
signals yield an apparent sound speed that is slower than that of a fast compressional wave; and thus,
when beamformed, the scattered signals maybe mistaken as being due to a slow wave.  Third, if
roughness diffraction is the dominant mechanism for subcritical penetration, near field effects may be
an issue; here, the scatterers at the interface act as the radiating source for signals transmitted into the
bottom layer.  Fourth, directionality of the interface scatterers will impact subcritical penetration.  This
second effort provided better understanding of effects of surface roughness on subcritical penetration.

In FY 1998, a partially populated, lower frequency portion of the candidate lens systems was designed
and fabricated.  The acoustic performance of this design was assessed against buried targets in a
measurement conducted in the Very Shallow Water (VSW) region near the Army Corps of Engineers
Field Research Facility in Duck, NC.  The measurement employed three lower frequency subsystems
identical in design, but with different diameters (apertures diameters of 20, 25, and 30 cm); these
systems were attached to a stationary sonar tower complete with horizontal pan and vertical tilt motors.
Calibrated retro-reflectors were used for buried targets, and a buried hydrophone array was employed
to determine coherence of the transmitted signal in the sediment.  Results indicated that an adequate
signal-to-background ratio was maintained for target detection for each of the three diameter
subsystems; signal-to-background increased with increasing diameter.8  In addition, the coherence of
the transmitted pulse was found to decrease with depth in the sediment and with increasing frequency.8

In FY 1999, a sonar aperture size of 25 cm was selected, and the dual frequency lens system was
designed in a modular form.  This aperture size was selected based on the combination of size
constraints and the results of the FY 1998 testing.  The system was designed such that the aperture of
the lower frequency subsystem is truncated and the higher frequency subsystem is located at this
truncated position.  Fabrication of partially populated lower and higher frequency subsystems was
initiated.  A model, which models a target as a collection of cylinders, spheres, ellipsoids, and disks
with each target component represented by an appropriate equation, was developed to create computer-
generated images that would provide guidance in determining the sonar parameters required for
classification-type images.9

In FY 2000, the partially populated lower and higher frequency lens subsystems were tested.  The
imaging capability of the higher frequency subsystem was assessed at the CSS Acoustic Test Facility
against calibrated free-field targets.  The lower frequency subsystem was assessed against targets
buried at steep and at shallow grazing angles during the ONR sponsored Department Research
Initiative (DRI) experiment “High-Frequency Sound Interaction in Ocean Sediments.”  This
experiment was conducted in 60-ft water depth in the Gulf of Mexico near Destin FL.  Both
subsystems were further assessed against buried (lower frequency subsystem) and proud (higher
frequency subsystem) targets during a measurement conducted at a sandy bottom site in St. Andrews
Bay near the CSS Ammo Pier.  This last set of measurements is presently in progress.

From the FY 2000 measurements, the sonar parameters for buried target detection will be finalized and
the appropriate sonar parameters needed to obtain classification-type images will be determined.  A
fully populated dual frequency system will be fabricated and tested under the 6.3 Diver Core Program.

RESULTS

Results of the DRI experiment demonstrated detection of buried calibrated retro-reflectors at steep and
subcritical grazing angles of 35o and 20o, respectively.  Calibrated targets buried at a grazing angle 10o



were not detected.  Figures 1 and 2 are photos of the water-sediment interface taken over the steep
(target #4) and shallow (target #5) buried targets, respectively.  Figure 3 illustrates an image sector
scan acquired with a 40 kHz, 0.1 ms sinusoidal pulse.  The data shown in these figures were acquired
under calm conditions and within 10 hours of a dive in which divers recorded that the retro-reflectors
were buried by at least 6 mm of sediment.  Backscattered returns from targets #4 [coordinates (5.3, 0)]
and #5 [coordinates (8.4, 0)] are easily seen; the signal-to-noise ratio (SNR) is over 15 dB for target #4
and about 4 dB for target #5.  This image sector scan corresponds to data obtained with a back up
sonar system because a loose connection in the lower frequency lens subsystem’s leak-tight canister
prevented it from transmitting consistently during the experiment.  This provided the motivation for
conducting the assessment test near the CSS Ammo Pier, which is presently in progress.
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The Direct Research Initiative (DRI) program “High-Frequency Sound Interaction in Ocean
Sediments” is an ONR funded research effort that has an objective to provide a physical understanding
of the observed penetration into sediment at shallow grazing angles.

An advanced motion compensation for Synthetic Aperture Sonar (SAS) task funded by ONR seeks to
increase the area coverage rate of present SAS systems by developing sophisticated motion
compensation algorithms.

An acoustic lens effort, funded by ONR under an EOD program, is using acoustic lens techniques to
develop a high resolution, short-range (less than 10 meters) imaging sonar which will operate in the
frequency range of 2 to 3 MHz.
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